Journal of Physical Chemistry B, Vol.109, No.10, 4700-4706, 2005
Capillary condensation in a geometrically and a chemically heterogeneous pore: A molecular simulation study
A computer simulation study has been carried out, using an extended Gibbs ensemble Monte Carlo technique, to examine the influence of so-called geometric and chemical disorder on the thermodynamic behavior of simple fluids confined in porous media. The technique allows the equilibrium coexistence of gas and liquid phases to be calculated in a single run. The phase diagram of Lennard-Jones fluid has been calculated in a perfectly cylindrical pore as a reference. Some disorder is then introduced in the porous material, first by spatially modifying the external potential of the initially cylindrical pore, to imitate the geometric disorder of a more realistic pore (undulation, constrictions, etc.) and second by modulating the amplitude of the same initially cylindrical potential to reproduce the energetic disorder of realistic pores due to chemical variations along it. It is shown that the chemical disorder has a much stronger effect on the phase diagram of the confined fluid. The complete adsorption/desorption isotherms are also calculated to help in understanding the large effects of chemical disorder.