Journal of Physical Chemistry B, Vol.109, No.12, 5644-5652, 2005
Optical properties and delocalization of excess negative charges on oligo(phenylenevinylene)s: A quantum chemical study
A quantum chemical study of the electronic structure of negatively charged phenylenevinylene (PV) oligomers and methoxy-substituted derivatives is presented. The geometries of the PV oligomers were optimized using density functional theory. The geometry deformations are found to be delocalized along the entire oligomer chain without indication of polaron formation. The optical absorption spectra of the negatively charged PVs were calculated using both time-dependent density functional theory (TDDFT) and the singly excited configuration interaction method with an intermediate neglect of differential overlap reference wave function (INDO/s-CIS). The available experimental optical absorption energies are reproduced by the calculations. Introduction of methoxy substituents reduces the transition energies, while this does not have a strong effect on the charge distribution along the chain. DFT calculations yield a more delocalized excess negative charge than that of INDO/s-CIS calculations.