화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.127, No.10, 3545-3555, 2005
O-atom transport catalysis by atomic cations in the gas phase: Reduction of N2O by CO
Atomic cations (26), M+, have been shown to lie within a thermodynamic window for O-atom transport catalysis of the reduction of N2O by CO and have been checked for catalytic activity at room temperature with kinetic measurements using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Only 10 of these 26 atomic cations were seen to be catalytic: Ca+, Fe+, Ge+, Sr+, Ba+, Os+, Ir+, Pt+, Eu+, and Yb+. The remaining 16 cations that lie in the thermodynamic window (Cr+, Mn+, Co+, Ni+, Cu+, Se+, Mo+, Ru+, Rh+, Sn+, Te+, Re+, Pb+, Bi+, Tm+, and Lu+) react too slowly at room temperature either in the formation of MO+ or in its reduction by CO. Many of these reactions are known to be spin forbidden and a few actually may lie outside the thermodynamic window. A new measure of efficiency is introduced for catalytic cycles that allows the discrimination between catalytic cations on the basis of the efficiencies of the two legs of the catalytic cycle. Also, a potential-energy landscape is computed for the reduction of N2O by CO catalyzed by Fe+(D-6) that vividly illustrates the operation of an ionic catalyst.