화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.127, No.12, 4297-4307, 2005
Total syntheses of amphidinolides T1 and T4 via catalytic, stereoselective, reductive macrocyclizations
Described in this work are total syntheses of amphidinolides T1 and T4 using two nickel-catalyzed reductive coupling reactions of alkynes, with an epoxide in one case (intermolecular) and with an aldehyde in another (intramolecular). The latter was used to effect a macrocyclization, form a C-C bond, and install a stereogenic center with > 10:1 selectivity in both natural product syntheses. Alternative approaches in which intermolecular alkyne-aldehyde reductive coupling reactions would serve to join key fragments were investigated and are also discussed; it was found that macrocyclization (i.e. intramolecular alkyne-aldehyde coupling) was superior in several respects (diastereoselectivity, yield, and length of syntheses). Alkyne-epoxide reductive couplings were instrumental in the construction of key fragments corresponding to approximately half of the molecule of both natural products. In one case (T4 series), the alkyne-epoxide coupling exhibited very high site selectivity in a coupling of a diyne. A model for the stereoselectivity observed in the macrocyclizations is also proposed.