화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.127, No.12, 4326-4335, 2005
Convergent total synthesis of gymnocin-A and evaluation of synthetic analogues
The first total synthesis of gymnocin-A (1), a cytotoxic polycyclic ether isolated from a notorious red tide dinoflagellate, Karenia mikimotoi, has been accomplished. The synthesis relies heavily on the Suzuki-Miyaura cross-coupling-based methodology to assemble the tetradecacyclic polyether skeleton. Convergent union of the GHI (5) and KLMN (6) rings, both of which were prepared from a common intermediate 7, and the subsequent ring closure of the J ring delivered the GHIJKLMN ring. The crucial coupling between the ABCD and FGHIJKLMN ring fragments (3 and 4, respectively) and stereoselective installation of the C-17 hydroxyl group, followed by cyclization of the E ring gave rise to the tetradecacyclic polyether skeleton 2. Finally, incorporation of the 2-methyl-2-butenal side chain completed the total synthesis of gymnocin-A. The convergent nature of the synthesis, which employs three fragments of comparable complexity, is well-suited for preparation of various structural analogues of gymnocin-A to explore the structure-activity relationship. The results of preliminary structure-activity relationship studies of several synthetic analogues are also provided.