Journal of the American Chemical Society, Vol.127, No.12, 4433-4444, 2005
Theoretical study of the truncated hemoglobin HbN: Exploring the molecular basis of the NO detoxification mechanism
Mycobacterium tuberculosis is the causative agent of human tuberculosis. The nitric oxide reaction with oxy-truncated hemoglobin N (trHbN) has been proposed to be responsible for the resistance mechanism by which this microorganism can evade the toxic effects of NO. In this work, we explore the molecular basis of the NO detoxification mechanism using a combination of classical and hybrid quantum-classical (QM-MM) simulation techniques. We have investigated the structural flexibility of the protein, the ligand affinity properties, and the nitric oxide reaction with coordinated O-2. The analysis of the classical MID trajectory allowed us to identify Phe62 as the gate of the main channel for ligand diffusion to the active site. Moreover, the opening of the channel stems from the interplay between collective backbone motions and local rearrangements in the side chains of the residues that form the bottleneck of the tunnel. Even though the protein environment is not found to make a significant contribution to the heme moiety catalyzed reaction, the binding site influences the physiological function of the enzyme at three different levels. First, by isolating the intermediates formed in the reaction, it prevents nondesired reactions from proceeding. Second, it modulates the ligand (O-2, NO) affinity of the protein, which can be ascribed to both distal and proximal effects. Finally, the stabilization of the Tyr33-Gln58 pair upon O-2 binding might alter the essential dynamics of the protein, leading in turn to a mechanism for ligand-induced regulation.