Journal of the American Chemical Society, Vol.127, No.15, 5689-5694, 2005
Functionalization of thioctic acid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins
This paper presents an efficient strategy for the specific immobilization of fully functional proteins onto the surface of nanoparticles. Thioctic acid-derivatized gold clusters are used as a scaffold for further stepwise modification, leading to a cobalt(II)-terminated ligand shell. A histidine tag introduced by genetic engineering into a protein is coordinated to this transition metal ion. The specific immobilization has been demonstrated for the cases of a genetically engineered horseradish peroxidase and ferredoxin-NADP+ reductase, confirming the attachment of the fully functional proteins to the Co(II)-terminated nanointerface. The absence of nonspecific protein adsorption and the specificity of the binding site have been verified using several analogues of the enzymes without the histidine tag.