Langmuir, Vol.21, No.7, 2696-2703, 2005
Influence of the hydrotrope structure on the physical chemical properties of polyoxide aqueous solutions
The physical chemical properties of block substituted poly(ethylene oxide-propylene oxide) (PEO-PPO) block copolymer aqueous solutions were evaluated in the presence of two hydrotropes of different structures: sodium p-toluene sulfonate (NaPTS) and butyl monoglycol sodium sulfonate (NaBMGS). The critical micelle concentration and the cloud point of the copolymer solutions were displaced to higher concentration values, indicating that the solubility of the copolymer was increased in the presence of the hydrotropes. Temperature increased the micelle hydrodynamic radius, but concentration had a limited effect. Carbon-13 nuclear magnetic resonance (C-13 NMR) permitted the interaction between the surface-active agent and the hydrotrope to be evaluated: NaBMGS, which presented a more pronounced hydrotropic effect, interacts more effectively with the hydrophobic moiety of the surfactant, while NaPTS interacts rather mainly with the hydrophilic oxyethylenic groups. The results furnish experimental evidence to conclude that the hydrotropic phenomenon is specific in relation to both the hydrotrope and the solubilizate.