화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.43, No.2, 206-214, April, 2005
금속산화물 담지촉매상에서 연속 습식 TCE 분해반응
Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts
E-mail:
초록
TiO2에 담지된 불균일 촉매상에서 ppm 수준으로 존재하는 수중 유기오염물질들을 제거하기 위한 모델반응으로 액상 trichloroethylene(TCE) 분해반응을 선정하였으며, 여러 반응변수의 동시제어가 가능하도록 디자인된 연속 흐름식 고정층 반응기 내에서 incipient wetness 기법으로 제조된 여러 전이금속 산화물 촉매들의 TCE 분해활성을 조사하였다. 선택된 반응조건에서 모델반응의 내부확산저항은 없었으며, 36 ℃의 반응온도에서 촉매표면에 흡착에 의한 액상 TCE 제거된 정도는 무시할 만하였고 촉매반응에 의해서만 제거될 수 있었다. TCE 제거반응에 대한 촉매들의 활성 및 반응시간에 따른 분해효율의 의존성은 사용된 금속 산화물 및 담지체의 종류에 따라 달라지는 것으로 나타났다. 5 wt.% CoOx/TiO2 촉매는 본 대상반응에 대하여 가장 우수한 활성을 갖는 것으로 나타났으며, 반응시간의 경과 정도에 따라 TCE 분해효율이 점진적으로 증가하여 안정되는 전이구간의 존재를 확인할 수 있었다. 이와 같은 촉매활성의 반응시간 의존성은 반응 초기와 일정시간 경과 후의 TiO2 표면에 존재하는 CoOx의 표면구조가 상이할 뿐만 아니라 반응시간 경과와 함께 활성이 더욱 높은 Co species의 표면노출을 암시하고 있다. NiOx, CrOx와 같은 금속 산화물 촉매들의 반응활성은 매우 낮은 수준이었다. TiO2와 MFI를 담지체로 하여 각각 incipient wetness법과 이온교환법으로 제조된 CuOx/TiO2, Cu-MFI, FeOx/TiO2 및 Fe-MFI의 TCE 제거효율을 반응시간의 함수로 살펴본 결과, Cu 촉매들에서 관찰 되는 반응시간-분해효율 거동과는 다른 현상이 FeOx/TiO2와 Fe-MFI 촉매상에서 관찰되었다. 36 ℃의 반응온도에서 전 반응시간 동안에 5 wt.% FeOx/TiO2 촉매상에서 TCE 제거반응은 일어나지 않았으나, 1.2 wt.% Fe-MFI의 경우 반응 초기에 높은 제거율을 일정시간 동안 유지하다가 서서히 감소하는 비활성화 현상이 발생하였다. 이는 동일한 활성성분이 사용된다 할지라도 그 제조방법에 따라 촉매활성이 달라질 수 있음을 보여주고 있으며, 액상반응 중에 일어나는 활성성분의 redox cycle이 중요한 역할을 할 수 있음을 암시하고 있다. 가장 우수한 CoOx/TiO2 촉매의 TCE 분해활성에 미치는 CoOx 담지량, 반응온도 등의 영향을 조사한 결과, 최적의 CoOx 담지량이 존재하였고 반응온도가 높을수록 TCE 제거효율은 높게 나타났다. 반응 중에 CoOx leaching에 의한 CoOx의 손실이 확인되었으나 TCE 전환율에 영향을 미칠 정도는 아닌 것으로 판단되었다.
Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% CoOx/TiO2 catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the CoOx might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at 36 ℃, but no TCE removal also occurred by the process of adsorption on TiO2 surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for TiO2-supported NiOx and CrOx catalysts. Wet oxidation perfor-mance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% FeOx/TiO2 catalyst gave no activity in the oxidation reaction at 36 ℃, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different CoOx loadings and reaction temperatures for the decomposition reaction at 36 ℃ with CoOx/TiO2, the catalyst possessed an optimal CoOx amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the CoOx catalyst.
  1. Luck F, Catal. Today, 27(1-2), 195 (1996) 
  2. Mishra VS, Mahajani VV, Joshi JB, Ind. Eng. Chem. Res., 34(1), 2 (1995) 
  3. Hamoudi S, Sayari A, Belkacemi K, Bonneviot L, Larachi F, Catal. Today, 62(4), 379 (2000) 
  4. Qin JY, Zhang QL, Chuang KT, Appl. Catal. B: Environ., 29(2), 115 (2001) 
  5. Klinghoffer AA, Cerro RL, Abraham MA, Catal. Today, 40(1), 59 (1998) 
  6. Fortuny A, Bengoa C, Font J, Fabregat A, J. Hazard. Mater. B, 64(2), 181 (1999) 
  7. Pintar A, Batista J, Levec J, Catal. Today, 66(2-4), 503 (2001) 
  8. Pintar A, Batista J, Catal. Today, 53(1), 35 (1999) 
  9. Pintar A, Batista J, Levec J, Chem. Eng. Sci., 56(4), 1551 (2001) 
  10. Gallezot P, Laurain N, Isnard P, Appl. Catal. B: Environ., 9(1-4), L11 (1996) 
  11. Cheng SF, Wu SC, Chemosphere, 43(8), 1023 (2001) 
  12. Cybulski A, Trawczynski J, Appl. Catal. B: Environ., 47(1), 1 (2004) 
  13. Kim MH, Choo KH, Theor. Appl. Chem. Eng., 9(1), 1180 (2003)
  14. Kim MH, Choo KH, Theor. Appl. Chem. Eng., 10(1), 1038 (2004)
  15. Park KW, Choo KH, Kim MH, "Degradation of Volatile Organic Compounds in Water using a Photocatalytic Reactor with Crossflow Microfiltration Membranes", Asian Waterqual'03, October 19-23, Bangkok, Thailand (2003)
  16. Hamoudi S, Larachi F, Sayari A, J. Catal., 177(2), 247 (1998) 
  17. Chen H, Sayari A, Adnot A, Larachi F, Appl. Catal. B: Environ., 32(3), 195 (2001) 
  18. Kim MH, Nam IS, Kim YG, Appl. Catal. B: Environ., 12(2-3), 125 (1997) 
  19. Pintar A, Catal. Today, 77(4), 451 (2003) 
  20. Kim MH, Ebner JR, Friedman RM, Vannice MA, J. Catal., 208(2), 381 (2002) 
  21. Brik Y, Kacimi M, Ziyad M, Bozon-Verduraz F, J. Catal., 202(1), 118 (2001) 
  22. Voss A, Borgmann D, Wedler G, J. Catal., 212(1), 10 (2002) 
  23. Kim MH, Choo KH, Theor. Appl. Chem. Eng., 10(2), 2255 (2004)
  24. Santos A, Yustos P, Quintanilla A, Rodriguez S, Garcia-Ochoa F, Appl. Catal. B: Environ., 39(2), 97 (2002) 
  25. Pruden AL, Ollis DF, J. Catal., 82(2), 404 (1983) 
  26. Glaze W, Kenneke JF, Ferry JL, Environ. Sci. Technol., 27(1), 177 (1993) 
  27. Masende ZPG, Kuster BFM, Ptasinski KJ, Janssen FJJG, Katima JHY, Schouten JC, Appl. Catal. B: Environ., 41(3), 247 (2003)