화학공학소재연구정보센터
Polymer(Korea), Vol.29, No.3, 294-299, May, 2005
온도응답성 고분자의 패턴상 그래프트를 이용한 공배양법
Cell Co-culture Method by Patterned Graft of Thermo-Responsive Polymer
E-mail:
초록
온도응답성 고분자인 PIPAAm을 포토마스크를 사용하여 전자빔조사에 의해 패턴상으로 세포배양용 폴리스티렌 접시표면에 그래프트하였다. 폴리스티렌 표면에의 PIPAAm의 그래프트는 ATR-FTIR과 ESCA에 의한 표면분석을 통해 확인하였다. 이러한 표면에 간실질세포를 37 ℃에서 배양하였고, 균일하게 간세포가 배양된 배양접시를 PIPAAm의 LCST 이하인 20 ℃로 배양온도를 낮추어 PIPAAm이 그래프트된 도메인에 접착된 간실질세포를 탈착시키고 배양 접시를 다시 37 ℃로 올린 후 두 번째 혈관내피세포를 파종하여 PIPAAm이 그래프트된 도메인에만 선택적으로 접착시킴으로써 같은 평면상에서 간실질세포와 혈관내피세포를 공배양할 수 있게 되었다. 이러한 방법으로 생체외에서 간실질세포와 혈관내피세포를 장기간에 걸쳐 공배양할 수 있었다.
Thermo-responsive poly(N-isopropylacrylamide) (PIPAAm) was covalently patterned by masked electron beam irradiation. Introduction of PIPAAm on tissue culture polystyrene dish was confirmed by ATR-FTIR and ESCA measurements. Hepatocytes were cultured at 37 ℃ on these surfaces. Cells adhered on PIPAAm-grafted domains were detached by reducing culture temperature to 20 ℃. Endothelial cells were then seeded and cultured on the same surfaces. Seeded endothelial cells were selectively attached on hepatocytes detached and PIPAAm-grafted domains and could be co-cultured with hepatocytes on the same culture dishes with clear pattern. This co-culture method enabled long-term co-culture of hepatocytes with endothelial cells.
  1. Langer R, Vacanti JP, Science, 260, 920 (1993) 
  2. Stange J, Mitzner SR, Klammt S, Liver transplant., 6, 603 (2000) 
  3. Stange J, Mitzner SR, Ramlow W, ASAIO J., 39, 621 (1993) 
  4. Cho CS, Park YH, Park IK, Polym. Sci. Technol., 10(6), 763 (1999)
  5. Hirose M, Yamato M, Kwon OH, Harimoto M, Okano T, Yonsei Med. J., 41, 803 (2002)
  6. Bhatia SN, Yarmush ML, Toner M, J. Biomed. Mater. Res., 34, 189 (1997) 
  7. Singhvi R, Stephanopoulos G, Wang DI, Biotechnol. Bioeng., 43(8), 764 (1994) 
  8. Oakley C, Bruntte DM, Cell Motil. Cytoskeleton, 31, 45 (1995) 
  9. Lee JS, Kaibara M, Iwaki M, Casabe J, Kusakabe M, Biomaterials, 14, 71 (1993)
  10. Soekarno A, Lom B, Hockberger PE, Neuroimage, 1, 129 (1993) 
  11. Matsuda T, Sugawara T, Inoue K, ASAIO J., 38, 243 (1992)
  12. Hirose M, Kwon OH, Yamato M, Kikuchi A, Okano T, Biomacromolecules, 1, 377 (2000) 
  13. Yamato M, Kwon OH, Hirose M, Kikuchi A, Okano T, J. Biomed. Mater. Res., 55, 137 (2001) 
  14. Yamato M, Kikuchi A, Kohsaka S, Terasaki T, Recum HAV, Kim SW, Sakura Y, Okano T, Tissue Engineering for Therapeutic Use 3, Elsevier, Amsterdam, 99 (1999)
  15. Harimoto M, Yamato M, Takanashi C, Isoi Y, Kikuchi A, Okano T, J. Biomed. Mater. Res., 62, 464 (2002) 
  16. Chen G, Ito Y, Imanishi Y, Magnani A, Lamponi S, Barbucci R, Bioconjugate Chem., 8, 730 (1997) 
  17. Blanquaert F, Barritault D, Carucelle JP, J. Biomed. Mater. Res., 44, 63 (1999) 
  18. Chen G, Ito Y, Imanishi Y, Bioconjugate Chem., 8, 106 (1999) 
  19. Ito Y, Uno T, Liu SQ, Imanashi Y, Biotechnol. Bioeng., 40, 1271 (1992) 
  20. Ito Y, Liu SQ, Imanashi Y, Biomaterials, 12, 449 (1991) 
  21. Lee JH, Lee SJ, Khang G, Lee HB, J. Biomater. Sci.-Polym. Ed., 50, 283 (1999)
  22. Heskins M, Guillet JE, J. Macromol. Sci. Chem., A2, 1441 (1968)
  23. Okano T, Yamada M, Okuhara M, Sakai H, Sakurai Y, Biomaterials, 16, 297 (1996) 
  24. Kwon OH, Kikuchi A, Yamato M, Sakurai Y, Okano T, J. Biomed. Mater. Res., 50, 82 (2000)