화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.22, No.3, 358-363, May, 2005
Electrochemical Degradation of Aqueous Phenols Using Graphite Electrode in a Divided Electrolytic Cell
E-mail:
Untreated industrial effluents invariably contain large amounts of heavy metals and organics. This paper reports the electrochemical oxidation of synthetic water containing 200 ppm of phenol. Studies have been carried out in a compartmentalized cell using platinum (cathode) and graphite (anode). Electrolysis has been done for 40 h at constant applied potential of 5 V in different electrolytes, such as, NaCl (aq), NaOH (aq) and a mixture containing both NaCl (aq) and NaOH (aq) as the anolyte and acid as the catholyte. Phenol concentration decreased from the initial value of 200 to about 10 ppm.; the corresponding COD values, respectively, are ~400 to ~100 ppm. The reaction goes through chloro-compounds as intermediates before being mineralized. The carbon anode seems to be passivated with a thin layer of poly-phenol. A concomitant amount of hydrogen is generated during the electrolytic degradation of phenol.
  1. Azzam MO, Al-Tarazi M, Tahboub Y, J. Hazard. Mater., 75, 99 (2000) 
  2. Canizares P, Dominguez JA, Rodrigo MA, Villasenor J, Rodriguez J, Ind. Eng. Chem. Res., 38(10), 3779 (1999) 
  3. Canizares P, Martinez F, Diaz M, Garcia-Gomez J, Rodrigo MA, J. Electrochem. Soc., 149(8), D118 (2002) 
  4. Clesceri LS, Greenberg AE, Eaton AD, (Ed.), Standard Methods for the Examination of Water and Waste Water, 20th Edition, Washington, Part 5000, pp. 14-15 (1998)
  5. Comninellis C, Pulgarin C, J. Appl. Electrochem., 21, 703 (1991) 
  6. DuVall SH, McCreery RL, J. Am. Chem. Soc., 122(28), 6759 (2000) 
  7. DuVall SH, McCreey RL, Anal. Chem., 71, 4594 (1999) 
  8. Ezerskis Z, Jusys Z, J. Appl. Electrochem., 32(7), 755 (2002) 
  9. Ezerskis Z, Jusys Z, Pure Appl. Chem., 73, 1929 (2001)
  10. Gattrell M, Kirk DW, Can. J. Chem. Eng., 68, 997 (1990)
  11. Iniesta J, Gonzalez-Garcia J, Exposito E, Montiel V, Aldaz A, Water Res., 35, 3291 (2001) 
  12. Juttner K, Galla U, Schmieder H, Electrochim. Acta, 45(15-16), 2575 (2000) 
  13. Kannan K, Sivadurai SN, JohnBrechmans L, Vijayavalli R, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 30, 2185 (1995)
  14. Liu YC, Mccreery RL, J. Am. Chem. Soc., 117(45), 11254 (1995) 
  15. Peiro AM, Ayllon JA, Peral J, Domenech X, Appl. Catal. B: Environ., 30(3-4), 359 (2001) 
  16. Pulgarin C, Adler N, Peringer P, Comninellis C, Water Res., 28, 887 (1999) 
  17. Rajeshwar K, Ibanez JG, Swain GM, J. Appl. Electrochem., 24(11), 1077 (1994)
  18. Ribordy P, Pulgarin C, Kiwi J, Peringer P, Water Sci. Technol., 35, 293 (1997)
  19. Tahar NB, Savall A, J. Electrochem. Soc., 145(10), 3427 (1998) 
  20. Torres RA, Peringer W, Pulgarin C, Chemosphere, 50, 97 (2003) 
  21. Viswanath RP, Int. J. Hydrog. Energy, 29, 1191 (2004)
  22. Wang J. Martynez T, Yaniv DR, McCormick LD, J. Electroanal. Chem., 313, 129 (1991) 
  23. Wu Z, Cong Y, Zhou M, Ye Q, Tan T, Korean J. Chem. Eng., 19(5), 866 (2002)
  24. Wu Z, Zhou M, Environ. Sci. Technol., 35, 2698 (2001) 
  25. Zareie MH, Korbahi BK, Tanyolac A, J. Hazard. Mater., B87, 199 (2001)