Korean Journal of Chemical Engineering, Vol.22, No.3, 412-417, May, 2005
Characteristics of the Lipase from Candida rugosa Modified with Copolymers of Polyoxyethylene Derivative and Maleic Acid Anhydride
E-mail:
The hydrophilic copolymer, polyethylene oxide (PEO) allyl ester-maleic anhydride (MA), copolymer was used to modify the lipase from Candida rugosa. MA, in a functional group, reacts easily with amino acids of lipase. The degree of modification (DM) was varied by changing the weight ratio of copolymer to protein of lipase over the range of 10-120 (w/w). The specific activity decreased as DM increased. At the maximum modification degree of 35%, the modified lipase retained more than 65% of the unmodified native lipase activity. The modified lipase displayed a high stability of activity against temperature and pH. The remaining activity of modified lipase was about 2-4 fold of that of native lipase in the severe pH and temperature condition. Finally, it showed 20% greater reaction of substrate at 10 hr than in the case where native lipase was used.
Keywords:Ester Hydrolysis;Modified Lipase;Maleylation;Copolymer;Stability of Enzyme;Two Phase Partition
- Benjamin S, Pandey A, Yeast, 14, 1069 (1998)
- Borgstrom B, Brockman HL, Lipases, Elsevier, New York (1984)
- Bousquet MP, Willemot RM, Monsan P, Boures E, J. Biotechnol., 68, 61 (1999)
- Chae HJ, In MJ, Kim EY, Appl. Biochem. Biotechnol., 69, 53 (1998)
- Charusheela A, Arvind L, Enzyme Microb. Technol., 30(1), 19 (2002)
- Diamond AD, Hsu JT, Advances in Biochem. Eng. Biotech., 49, 89 (1992)
- Dordick JS, Biocatalysis for Industry, Plenum Press, New York (1991)
- Dossat V, Combes D, Marty A, J. Biotechnol., 97, 117 (2002)
- Eijsink VGH, Bjork A, Gaseidnes S, Sirevag R, Synstad B, Burg B, vandenVriend G, J. Biotechnol., 113, 105 (2004)
- Furukawa M, Kodera Y, Uemura T, Hiroto M, Matsushima A, Kuno H, Matsushita H, Inada Y, Biochem. Biophys. Res. Commun., 199, 41 (1996)
- Goto M, Kamiya N, Miyata M, Nakashio F, Biotechnol. Prog., 10(3), 263 (1994)
- Guo Z, Sun Y, Biotechnol. Prog., 20(2), 500 (2004)
- Habeeb AFSF, Anal. Biochem., 14, 328 (1966)
- Jaeger K, Reetz M, Trends Biotechnol., 16, 396 (1998)
- Jeon GJ, Hur BK, Yang JW, Korean J. Biotechnol. Bioeng., 14, 696 (1999)
- Jensen RG, Lipids, 18, 650 (1983)
- Joo H, Yoo YJ, Dordick JS, Korean J. Chem. Eng., 15(4), 362 (1998)
- Gee KB, Choi CY, Korean J. Chem. Eng., 1(1), 13 (1984)
- Kim Y, Park K, Lee H, Jang S, Song HC, Shin HC, Park JJ, Park J, Maken S, J. Ind. Eng. Chem., 10(3), 384 (2004)
- Koeller KM, Wong CH, Nature, 409, 232 (2001)
- Kontkanen H, Tenkanen M, Fagerstrom R, Reinikainen T, J. Biotechnol., 108, 51 (2004)
- Kwon DY, Rhee JS, Korean J. Chem. Eng., 1(2), 153 (1984)
- Lee SK, Park SW, Kim YI, Chung KH, Hong SI, Kim SW, Korean J. Chem. Eng., 19(2), 261 (2002)
- Longo MA, Combes D, J. Chem. Technol. Biotechnol., 74(1), 25 (1999)
- Matsumoto M, Kida K, Kondo K, J. Chem. Technol. Biotechnol., 76(10), 1070 (2001)
- Moon HY, Kim SY, Park JW, Kajiuchi T, Korean J. Chem. Eng., 10(4), 235 (1993)
- Nishio T, Takahashi K, Tsuzuki T, Yoshimoto T, Kodera Y, Matsushima A, Saito Y, Inada Y, J. Biotechnol., 8, 39 (1988)
- Noel M, Combes D, J. Biotechnol., 102, 23 (2003)
- Park CY, Ryu YW, Kim C, Korean J. Chem. Eng., 18(4), 475 (2001)
- Park KN, Park JW, J. Appl. Polym. Sci., 77(2), 368 (2000)
- Park JW, Park KN, Biotechnol. Tech., 13, 49 (1999)
- Park JW, Korean J. Chem. Eng., 12(5), 523 (1995)
- Park J, Park K, Bioresour. Technol., 79(1), 91 (2001)
- Park JW, Park KN, Song HC, Shin HC, J. Biotechnol., 93, 203 (2002)
- Park K, Park J, Song H, Shin H, Park J, Ahn JS, Korean J. Chem. Eng., 19(2), 285 (2002)
- Park SW, Kim YI, Chang KS, Kim SW, Process Biochem., 37-2, 153 (2001)
- Reetz MT, Curr. Opin. Chem. Biol., 6, 145 (2002)
- Schmid A, Dordick JS, Hauer B, Wubbolts M, Witholt B, Nature, 409, 258 (2001)
- Wu JC, Song BD, Process Biochem., 37, 1229 (2002)
- Wu XY, Jaaskelainen S, Linko YY, Enzyme Microb. Technol., 19(3), 226 (1996)
- Wu JC, He ZM, Yao CY, Yu KT, J. Chem. Technol. Biotechnol., 76(9), 949 (2001)