화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.22, No.3, 425-432, May, 2005
Development of Novel Protein Refolding Using Simulated Moving Bed Chromatography
E-mail:
In vitro protein refolding is still one of the baffles in both structural biology and development of new biopharmaceuticals, especially for large-scale production of valuable proteins that are overexpressed as inclusion bodies in Escherichia coli. A new continuous refolding method using four zone simulated moving bed process based on size exclusion mechanism was developed to overcome difficulties of inclusion body refolding. Protein refolding using size exclusion SMB enables us to obtain refolded protein continuously with high productivity, low consumption of refolding buffer, and high efficiency of size exclusion medium. Thermodynamics and kinetic parameters for SMB operation were estimated from the best-fit values by comparing the simulation and experimental chromatography results. The SMB operation condition was obtained from the triangle theory, and experimental results were in good agreement with the simulation results.
  1. Altamirano MM, Golbik R, Zahn R, Buckle AM, Fersht AR, Proc. Natl. Acad. Sci. U.S.A., 94, 3576 (1997) 
  2. Anderson WL, Wetlaufer DB, J. Biol. Chem., 251(10), 3147 (1976)
  3. Batas D, Chaudhuri JB, Biotechnol. Bioeng., 50(1), 16 (1996) 
  4. Batas B, Chaudhuri JB, J. Chromatogr. A, 864, 229 (1999) 
  5. Batas B, Jones HR, Chaudhuri JB, J. Chromatogr. A, 766, 109 (1997) 
  6. Batas B, Schiraldi C, Chaudhuri JB, J. Biotechnol., 68, 149 (1999) 
  7. Bollag DM, Rozycki MD, Edelstein SJ, Protein Methods, 2nd ed., Wiley, New York (1996)
  8. Broughton DB, Chem. Eng. Prog., 64, 60 (1968)
  9. Broughton DB, Neuzil RW, Pharis JM, Brearley CS, Chem. Eng. Prog., 66, 70 (1970)
  10. Daniel JS, Bachmann A, Hofrichter J, Hodgson KO, Doniach S, Kiefhaber T, J. Mol. Biol., 288, 489 (1999) 
  11. Elwell M, Schellman J, Biochimi. Biophysi. Act.(BBA)-Protein Structure, 359(1), 351 (1974)
  12. Gao YG, Guan YX, Yao SJ, Cho MG, Korean J. Chem. Eng., 19(5), 871 (2002)
  13. Geng X, Chang X, J. Chromatogr. A, 599, 185 (1992) 
  14. Gu Z, Su Z, Janson JC, J. Chromatogr. A, 918, 311 (2001) 
  15. Jacobson JM, Frenz JH, Horvath C, Ind. Eng. Chem. Res., 26, 43 (1987) 
  16. Jungbauer A, Kaar W, Schegl R, Curr. Opin. Biotechnol., 15, 487 (2004) 
  17. Jupke A, Epping A, Schnidt-Traub H, J. Chromatogr. A, 944, 93 (2002) 
  18. Kotlarski N, Oneill BK, Francis GL, Middelberg AP, AIChE J., 43(8), 2123 (1997) 
  19. Lanckriet H, Middelberg APJ, J. Chromatogr. A, 1022, 103 (2004) 
  20. Lee CT, Mackley MR, Stonestreet P, Middelberg APJ, Biotechnol. Lett., 23(22), 1899 (2001) 
  21. Ma Z, Wang NH, AIChE J., 43(10), 2488 (1997) 
  22. Mazzotti M, Storti G, Morbidelli M, J. Chromatogr. A, 769, 3 (1997) 
  23. Middelberg APJ, Biochem. Eng. J., 61(1), 41 (1996) 
  24. Pace CN, Methods Enzymol., 131, 266 (1986)
  25. Pais LS, Loureiro JM, Rodrigues AE, Sep. Purif. Technol., 20, 67 (2000) 
  26. Rozema D, Gellman SH, J. Am. Chem. Soc., 117(8), 2373 (1995) 
  27. Saxena VP, Wetlaufer DB, Biochem, 9, 5015 (1970) 
  28. Shugar D, Biochim. Biophys. Acta, 8, 302 (1952) 
  29. Timasheff SN, Xie G, Biophys. Chem., 105, 421 (2003) 
  30. Wmer MH, Clore GM, Gronenborn AM, Kondoh A, Fisher RJ, Febs Lett., 345, 125 (1994) 
  31. Wildegger G, Kiefhaber T, J. Mol. Biol., 2792, 294 (1994) 
  32. Wu DJ, Xie Y, Ma Z, Wang NHL, Ind. Eng. Chem. Res., 37(10), 4023 (1998) 
  33. Yang YJ, Lee CH, Koo YM, Biotechnol. Bioprocess Eng., 9, 331 (2004)
  34. Zhang Z, Mazzotti M, Morbidelli M, Korean J. Chem. Eng., 21(2), 454 (2004)