화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.109, No.18, 4149-4153, 2005
An ab initio and density functional theory study of keto-enol equilibria of hydroxycyclopropenone in gas and aqueous solution phase
Keto-enol tautomerism in hydroxycyclopropenone (2-hydroxy-2-cyclopropen-1-one) has been studied using ab initio methods, the B3LYP functional of density functional theory, as well as complete basis set (CBSQB3 and CBS-APNO) and G3 methods. Absolute and relative energies were calculated with each of the methods, whereas computations of geometries and harmonic frequencies for hydroxycyclopropenone and 1,2-cyclopropanedione were computed in the gas phase but were limited to HF, MP2 and CCSD levels of theory, and the B3LYP functional, in combination with the 6-31++G** basis set. Using the MP2/6-31++G** gas phase optimized structure, each species was then optimized fully in aqueous solution by employing the polarizable continuum model (PCM) self-consistent reaction field approach, in which HF, MP2 and B3LYP levels of theory were utilized, with the same 6-31++G** basis set. In both gas and aqueous solution phases, the keto form is higher in energy for all of the model chemistries considered. The presence of the solvent, however, is found to have very little effect on the bond lengths, angles and harmonic frequencies. From the B3LYP/6-31++G** Gibbs free energy, the keto-enol tautomeric equilibrium constant for 2-hydroxy-2-cyclopropen-1-one &REVARR; 1,2-cyclopropanedione is computed to be K-T(gas) = 2.35 x 10(-6), K-T(aq) = 5.61 x 10(-14). It is concluded that the enol form is overwhelmingly predominant in both environments, with the effect of the solvent shifting the direction of equilibrium even more strongly in the favor of hydroxycyclopropenone. The almost exclusive nature of this species is attributed to stabilization resulting from aromaticity. Confirmation is provided by comparison of the simulated vibrational spectra of hydroxycyclopropenone with the measured infrared spectrum in an argon matrix.