화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.109, No.18, 4185-4194, 2005
Infrared Spectroscopy of the intramolecular hydrogen bond in acethylacetone: A computational approach
The intramolecular hydrogen bond in the enol-acethylacetone (ACAC) is investigated by performing reduced-dimensional quantum calculations. To analyze the shared proton vibrations, two sets of coordinates were employed: normal mode coordinates describing the motion in the vicinity of the most stable configuration, and internal coordinates accounting for the double minimum proton motion. It is proved that the extreme broadness of the OH-stretch band in ACAC is a consequence of the coexistence of two enol-ACAC structures: the global minimum and the transition state for rotation of the distal methyl group. Further, a ground-state tunneling splitting of 116 cm(-1) is found, and it is shown that the inclusion of the kinematic coupling is mandatory when treating large-amplitude proton motion. In the OH-stretch direction a splitting of 853 cm(-1) was predicted.