화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.18, 9111-9118, 2005
Hydration forces underlie the exclusion of salts and of neutral polar solutes from hydroxypropylcellulose
The distance dependence for the preferential exclusion of several salts and neutral solutes from hydroxypropyl cellulose (HPC) has been measured via the effect of these small molecules on the thermodynamic forces between HPC polymers in ordered arrays. The concentration of salts and neutral solutes decreases exponentially as the spacing between apposing nonpolar HPC surfaces decreases. For all solutes, the spatial decay lengths of this exclusion are remarkably similar to those observed between many macromolecules at close spacings where intermolecular forces have been ascribed to the energetics of water structuring. Exclusion magnitudes depend strongly on the nature and size of the particular salt or solute; for the three potassium salts studied, exclusion follows the anionic Hofmeister series. The change in the number of excess waters associated with HPC polymers is independent of solute concentration suggesting that the dominating interactions are between solutes and the hydrated polymer. These findings further confirm the importance of solvation interactions and reveal an unexpected unity of Hofmeister effects, preferential hydration, and hydration forces.