화학공학소재연구정보센터
Langmuir, Vol.21, No.10, 4724-4728, 2005
Synthesis of high surface area hydroxyapatite nanoparticles by mixed surfactant-mediated approach
A new surfactant-mediated approach was developed to synthesize hydroxyapatite (HAp) nanoparticles with high surface areas by calcination of their precursors encapsulated with calcium stearate using mixed surfactant-containing reaction mixtures. Acidic aqueous solution of calcium phosphate was mixed with both or either nonaoxyethylene dodecyl ether (C12EO9) and polyoxyethylene(20) sorbitan monostearate (Tween 60) and then was treated with aqueous ammonium at 25 ° C. The C12EO9-based single surfactant system yielded an aggregate of platy HAp nanoparticles 20-40 nm in size, whereas the Tween 60-based single and mixed systems led to lath-shaped HAp nanoparticles 2-8 nm wide and encapsulated with calcium stearate. On calcination at 500 ° C, the stearate-encapsulated HAp nanoparticles in the latter two systems were deorganized into high surface area HAp nanoparticles. Particularly, the HAp nanoparticles in the mixed system exhibited a specific surface area as high as 364 m(2) g(-1) that is roughly 3 times larger than 160 m(2) g(-1) for those in the single system. The significantly high surface area for the former is attributed to much less adhesion of decapsulated HAp nanoparticles, which originated from the particle separating effect of the C12EO9 molecules adsorbed on the outer surface of the stearate-encapsulated HAp nanoparticles to inhibit their agglomeration or interfacial coordination. The present results demonstrate that the mixed use of two different surfactants as a source of encapsulating and templating agent and a particle-separating agent is specifically effective for the synthesis of high surface area HAp nanoparticles.