화학공학소재연구정보센터
Applied Catalysis A: General, Vol.285, No.1-2, 190-195, 2005
Transesterification of diethyl oxalate with phenol using MoO3/SiO2 catalyst
Transesterification of diethyl oxalate (DEO) with phenol to form diphenyl oxalate (DPO) has been carried out in liquid phase using MoO3/ SiO2 solid acid catalyst with high conversion and 100% selectivity. A series Of MoO3/SiO2 catalysts with different Mo loadings (1-20 wt%) were prepared using sol-gel technique and characterized using X-ray diffraction analysis (XRD), BET specific surface area, temperature-programmed desorption (TPD) of ammonia, and FTIR spectroscopic analysis of adsorbed pyridine. XRD analysis revealed the amorphous nature of the catalyst up to 10 wt% MoO3 loading and the formation of crystalline α-MoO3 phase on amorphous silica support with higher MoO3 loading. BET surface area showed high surface area for catalysts prepared by sol-gel technique with lower MoO3 content; the surface area decreases with increasing MoO3 loading. Ammonia TPD shows much higher acid strength compared to the catalysts prepared by impregnation technique. Among the series of catalysts prepared, MoO3/SiO2 containing 1 wt% MoO3 was found to be the most active catalyst for transesterification reaction, with a maximum DEO conversion of 80.9 and 100% selectivity for DPO. The effects of reaction temperature and catalyst concentration on conversion and product selectivity have been investigated. © 2005 Elsevier B.V. All rights reserved.