화학공학소재연구정보센터
Biotechnology Letters, Vol.27, No.7, 519-524, 2005
Kinetic mechanism of streptomycin adenylyltransferase from a recombinant Escherichia coli
Bacterial resistance to the aminoglycoside antibiotics is manifested primarily by enzymic modification of these drugs. One important mechanism of streptomycin modification is through ATP-dependent O-adenylation, catalyzed by streptomycin adenylyltransferase. Initial velocity patterns deduced from steady state kinetics indicate a sequential mechanism. Dead-end inhibition by tobramycin and neomycin is non-competitive versus streptomycin and uncompetitive versus ATP, indicative of ordered substrate binding where ATP binds first and then streptomycin. These results surmise that streptomycin adenylyltransferase follows an ordered, sequential kinetic mechanism in which one substrate (ATP) binds prior to the antibiotic and pyrophosphate is released prior to formation of AMP-streptomycin.