화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.11, No.4, 495-501, July, 2005
Photocatalytic Decomposition of Acetic Acid over TiO2 and TiO2/SiO2 Thin Films Prepared by the Sol-Gel Method
E-mail:
Pure TiO2 and TiO2/SiO2 thin films were prepared by the sol-gel method and deposited on quartz slides by dip-coating. The physical properties of the prepared particles were investigated by thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared spectrophotometry (FT-IR), specific surface area analysis (BET), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Photo-catalytic activities of the TiO2 and TiO2/SiO2 thin films were evaluated for the photocatalytic decomposition of acetic acid using a batch photoreactor. From FT-IR spectroscopic analysis, the band for the Ti-O-Si vibration was observed and the band intensity for the Si-O-Si vibration increased upon increasing the silica content. From XRD analysis, the major phase of the pure TiO2 particle had an anatase structure and more than 95% of the anatase pratices calcined at 800 ℃ transformed to the rutile phase. However, no rutile phase was observed for the TiO2/SiO2 particles at temperatures up to 800 ℃. The crystallite size of the particles decreased from 23 to 9 nm upon increasing the silica content. TEM micrographs showed that the TiO2/SiO2 particles were spherical and had a narrow size distribution. The photocatalytic activity toward the decomposition of acetic acid increased upon increasing the SiO2 content. The TiO2/SiO2 thin film possessing the pure anatase phase showed higher photoactivity than did the pure anatase titania.
  1. Konovalova TA, Kispert LD, Konovalov VV, J. Phys. Chem. B, 103(22), 4672 (1999)
  2. Iwasaki M, Hara M, Kawada H, Tada H, Ito S, J. Colloid Interface Sci., 224(1), 202 (2000)
  3. Ito S, Inoue S, Kawada H, Hara M, Iwasaki M, Tada H, J. Colloid Interface Sci., 216(1), 59 (1999)
  4. Kim SW, Kang M, Choung SJ, J. Ind. Eng. Chem., 11(3), 416 (2005)
  5. Kim SY, Chang TS, Lee DK, Shin CH, J. Ind. Eng. Chem., 11(2), 194 (2005)
  6. Ding XZ, Liu XH, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 224, 210 (1997)
  7. Moon J, Takagi H, Fujishiro Y, Awano M, J. Mater. Sci., 36(4), 949 (2001)
  8. Sato T, Masaki K, Sato KI, Fujishiro Y, Okuwaki A, J. Chem. Technol. Biotechnol., 67(4), 339 (1996)
  9. Machida M, Ma XW, Taniguchi H, Yabunaka J, Kijima T, J. Mol. Catal. A-Chem., 155, 131 (2000)
  10. Anderson C, Bard AJ, J. Phys. Chem., 99(24), 9882 (1995)
  11. Fu X, Clark LA, Yang Q, Anderson MA, Environ. Sci. Technol., 30, 647 (1996)
  12. Livage J, Solid State Ion., 50, 307 (1992)
  13. Bach S, Pereira-Ramos JP, Baffier N, J. Mater. Chem., 8, 251 (1998)
  14. Cullity BD, Elements of X-Ray Diffraction, 2nd Edn., p.102. Addison-Wesley, Reading, MA (1978)
  15. Spurr RA, Myers H, Anal. Chem., 29, 760 (1957)
  16. Kato K, Tsuzuki A, Torii Y, Taoda H, Kato T, Butsugan Y, J. Mater. Sci., 30(3), 837 (1995)
  17. Duran A, Serna C, Fornes V, Fernandez-Navarro JM, J. Non-Cryst. Solids, 82, 69 (1986)
  18. Dutoit DC, Schneider M, Baiker A, J. Catal., 153(1), 165 (1995)
  19. Larbot A, Alary JA, Fabre JP, Guizard C, Cot L, "Microporous Layers from Sol-Gel Techniques", Better Ceramics Through Chemistry II, 659 (1986)
  20. Kominami H, Kato JI, Takada T, Doushi Y, Ohtani B, Nishimoto SI, Inoue M, Inui T, Kera Y, Chem. Lett., 235 (1997)
  21. Sawunyama P, Yasumori A, Okada K, Mater. Res. Bull., 33(5), 795 (1998)
  22. Ward DA, Ho EI, Ind. Eng. Chem. Res., 34(2), 421 (1995)
  23. Turchi CS, Ollis DF, J. Catal., 122, 178 (1990)
  24. Hong SS, Ju CS, Lim CG, Ahn BH, Lim KT, Lee GD, J. Ind. Eng. Chem., 7(2), 99 (2001)
  25. Lee GD, Jung SK, Jeong YJ, Park JH, Suh CS, Ahn BH, Hong SS, J. Ind. Eng. Chem., 8(1), 22 (2002)