Journal of Industrial and Engineering Chemistry, Vol.11, No.4, 495-501, July, 2005
Photocatalytic Decomposition of Acetic Acid over TiO2 and TiO2/SiO2 Thin Films Prepared by the Sol-Gel Method
E-mail:
Pure TiO2 and TiO2/SiO2 thin films were prepared by the sol-gel method and deposited on quartz slides by dip-coating. The physical properties of the prepared particles were investigated by thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared spectrophotometry (FT-IR), specific surface area analysis (BET), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Photo-catalytic activities of the TiO2 and TiO2/SiO2 thin films were evaluated for the photocatalytic decomposition of acetic acid using a batch photoreactor. From FT-IR spectroscopic analysis, the band for the Ti-O-Si vibration was observed and the band intensity for the Si-O-Si vibration increased upon increasing the silica content. From XRD analysis, the major phase of the pure TiO2 particle had an anatase structure and more than 95% of the anatase pratices calcined at 800 ℃ transformed to the rutile phase. However, no rutile phase was observed for the TiO2/SiO2 particles at temperatures up to 800 ℃. The crystallite size of the particles decreased from 23 to 9 nm upon increasing the silica content. TEM micrographs showed that the TiO2/SiO2 particles were spherical and had a narrow size distribution. The photocatalytic activity toward the decomposition of acetic acid increased upon increasing the SiO2 content. The TiO2/SiO2 thin film possessing the pure anatase phase showed higher photoactivity than did the pure anatase titania.
- Konovalova TA, Kispert LD, Konovalov VV, J. Phys. Chem. B, 103(22), 4672 (1999)
- Iwasaki M, Hara M, Kawada H, Tada H, Ito S, J. Colloid Interface Sci., 224(1), 202 (2000)
- Ito S, Inoue S, Kawada H, Hara M, Iwasaki M, Tada H, J. Colloid Interface Sci., 216(1), 59 (1999)
- Kim SW, Kang M, Choung SJ, J. Ind. Eng. Chem., 11(3), 416 (2005)
- Kim SY, Chang TS, Lee DK, Shin CH, J. Ind. Eng. Chem., 11(2), 194 (2005)
- Ding XZ, Liu XH, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 224, 210 (1997)
- Moon J, Takagi H, Fujishiro Y, Awano M, J. Mater. Sci., 36(4), 949 (2001)
- Sato T, Masaki K, Sato KI, Fujishiro Y, Okuwaki A, J. Chem. Technol. Biotechnol., 67(4), 339 (1996)
- Machida M, Ma XW, Taniguchi H, Yabunaka J, Kijima T, J. Mol. Catal. A-Chem., 155, 131 (2000)
- Anderson C, Bard AJ, J. Phys. Chem., 99(24), 9882 (1995)
- Fu X, Clark LA, Yang Q, Anderson MA, Environ. Sci. Technol., 30, 647 (1996)
- Livage J, Solid State Ion., 50, 307 (1992)
- Bach S, Pereira-Ramos JP, Baffier N, J. Mater. Chem., 8, 251 (1998)
- Cullity BD, Elements of X-Ray Diffraction, 2nd Edn., p.102. Addison-Wesley, Reading, MA (1978)
- Spurr RA, Myers H, Anal. Chem., 29, 760 (1957)
- Kato K, Tsuzuki A, Torii Y, Taoda H, Kato T, Butsugan Y, J. Mater. Sci., 30(3), 837 (1995)
- Duran A, Serna C, Fornes V, Fernandez-Navarro JM, J. Non-Cryst. Solids, 82, 69 (1986)
- Dutoit DC, Schneider M, Baiker A, J. Catal., 153(1), 165 (1995)
- Larbot A, Alary JA, Fabre JP, Guizard C, Cot L, "Microporous Layers from Sol-Gel Techniques", Better Ceramics Through Chemistry II, 659 (1986)
- Kominami H, Kato JI, Takada T, Doushi Y, Ohtani B, Nishimoto SI, Inoue M, Inui T, Kera Y, Chem. Lett., 235 (1997)
- Sawunyama P, Yasumori A, Okada K, Mater. Res. Bull., 33(5), 795 (1998)
- Ward DA, Ho EI, Ind. Eng. Chem. Res., 34(2), 421 (1995)
- Turchi CS, Ollis DF, J. Catal., 122, 178 (1990)
- Hong SS, Ju CS, Lim CG, Ahn BH, Lim KT, Lee GD, J. Ind. Eng. Chem., 7(2), 99 (2001)
- Lee GD, Jung SK, Jeong YJ, Park JH, Suh CS, Ahn BH, Hong SS, J. Ind. Eng. Chem., 8(1), 22 (2002)