화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.43, No.4, 537-541, August, 2005
기포 유동층 반응기에서 건식 재생 흡수제를 이용한 이산화탄소 회수에 미치는 스팀 및 온도의 영향
Effects of Steam and Temperature on CO2 Capture Using A Dry Regenerable Sorbent in a Bubbling Fluidized Bed
E-mail:
초록
본 연구에서는 전력연구원으로부터 공급받은 건식 흡수제인 sorbA를 이용하여 기포 유동층 반응기에서 CO2 흡수 반응 특성을 살펴보았다. sorbA는 CO2 흡수를 위한 탄산나트륨과 내마모성과 기계적 강도를 위한 지지체로 구성되어 있다. CO2 흡수는 50-70℃의 온도 범위에서, 재생은 120-300 ℃의 온도 범위에서 이루어졌다. 반응시작 전 sorbA에 일정량의 물을 미리 함유하게 한 경우, 50 ℃에서 반응 초기 1-2분 동안 100%의 CO2 제거율을 보였다 .고온에서 재생되는 경우 반복 실험으로 인한 흡수제의 반응성과 제거 용량의 저하는 없었다. NMR 스펙트럼을 통해서 흡수반응과 재생반응 후 시료의 성분을 파악하였다. 본 연구에서 얻어진 결과는 두 개의 유동층 반응기를 가진 연속장치의 설계와 운전에 중요한 기초자료가 될 것이다.
A bubbling fluidized bed reactor was used to study CO2 capture from flue gas using a sodium-based dry regenerable sorbent, sorbA which was manufactured by korea Electric Power Research Institute. A dry sorbent, sorbA, consists of Na2CO3 for absorption and supporters for mechanical strength. CO2 capture was effective in the lower temperature range of 50-70 ℃, while regeneration occurred in the range of 120-300 ℃. To increase initial CO2 removal, some amount of steam was absorbed in the sorbents before injecting simulated flue gas. It was possible to remove most CO2 for 1-2 minutes at 50 ℃ and residence time of 2 seconds with steam pretreatment. Little or no reduction in initial reaction rate and capture capacity was observed in multicycle tests. The carbonated and regenerated sorbent samples were analyzed by NMR to confirm the extent of reaction. The results obtained in this study can be used as basic data for the scale-up design and operation of the CO2 capture process with two fluidized bed reactors.
  1. Hoffman JS, Pennline HW, "Investigation of CO2 Capture Using Regenerable Sorbents", 17th Annual Int'1 pittsburgh Coal Conference, Pittsburgh, U.S.A. (2000)
  2. Green DA, Turk BS, Gupta RP, Lopez-Ortiz A, Harrison DP, Liang Y, "Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents", Quarterly Technical Progress Report, DOE Cooperative Agreement No.: DE-FC26-00NT40923, US DOE (2001)
  3. Granite EJ, Pennline HW, "A Review of Novel Methods for Separation of Carbon Dioxide from flue and Fuel Gases", 20th Annual Int'l Pittsburgh Coal Conference, Pittsburgh, U.S.A (2003)
  4. Ryu CK, Lee JB, Oh JM, Yi CK, "Dry Regenerable Sorbents for CO2 Capture from Flue Gas", 20th Annual Int'l Pittsburgh Coal Conference, Pittsburgh, U.S.A (2003)
  5. Yi CK, Jo SH, Ryu HJ, Yoo YW, Lee JB, Ryu CK, "CO2 Reaction Characteristics of Dry Regenerable Sorbents in Fluidized Reactors", 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada (2004)
  6. Liang Y, Harrison DP, Gupta RP, Green DA, McMichael WJ, Energy Fuels, 18(2), 569 (2004) 
  7. Kunii D, Levenspiel O, Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston, U.S.A (1991)
  8. Seo Y, Lee H, J. Phys. Chem. B, 106(37), 9668 (2002)