화학공학소재연구정보센터
Polymer(Korea), Vol.29, No.5, 481-485, September, 2005
기상성장 탄소나노섬유/에폭시 복합재료위 열적 및 기계적 특성에 관한 연구
A Study on Thermal and Mechanical Properties of Vapor Grown Carbon Nanofibers-Reinforced Epoxy Matrix Composites
E-mail:
초록
본 연구에서는 2관능성 에폭시 수지에 기상성장 탄소나노섬유(VGCNFs)를 0, 0.1, 0.5, 1.0 그리고 2.0 wt% 함량비로 첨가하여, 제조한 VGCNFs/에폭시 복합재료의 열적 및 기계적 특성을 고찰하고자 하였다. VGCNFs/에폭시 나노 복합재료의 열적 특성은 TMA와 DMA로 알아 보았으며, 기계적 특성은 만능 시험기와 낙하 충격 시험기 및 마찰ㆍ마모 시험기를 통하여 관찰하였다. 실험 결과, VGCNFs 함량이 증가할수록 열적 및 기계적 특성이 향상됨을 확인할 수 있었는데, 이는 현재의 복합재료 시스템에 있어서 VGCNFs와 에폭시 사이의 기계적 얽힘 현상의 향상을 가져오는 복합재료의 가교구조의 증가 때문이라 판단된다.
In this work, the thermal and mechanical properties of vapor grown carbon nanofibers (VGCNFs)-reinforced difunctional epoxy (EP) composites were investigated in the presence of the 0, 0.1, 0.5, 1.0, and 2.0 wt% VGCNFs. The thermal properties of the VGCNFs/EP composites were studied by thermo-mechanical analysis (TMA) and dynamic mechanical analysis (DMA). The mechanical properties of the VGCNFs/EP composites were also examined by universal testing machine (UTM), falling impact test, and the friction and wear tests. From experimental results, the thermal and mecahnical properties of the VGCNFs/EP composites were improved with increasing the VGCNFs contents. This was due to the increase of crosslinking structure of the composites, resulting in improving the mechanical interlockings between VGCNFs and epoxy resins in the present composite system.
  1. Donnet JB, Bansal RC, Carbon Fibers, 2nd Ed., Marcel Dekker, New York (1990)
  2. Fitzer E, Carbon Fibers and Their Composites, McGraw-Hill, New York (1992)
  3. Kuttel OM, Groening O, Emmenegger C, Schlapbach L, Appl. Phys. Lett., 73, 2113 (1998) 
  4. Endo M, Kim YA, Ezaka M, Osada K, Yanagisawa T, Hayashi T, Terrones M, Dresselhaus MS, Nano Lett., 3, 723 (2003) 
  5. Seo MK, Park SJ, Chem. Phys. Lett., 44, 395 (2004)
  6. Lakshminarayanan PV, Toghiani H, Pittman CU, Carbon, 42, 2433 (2004) 
  7. Oberlin A, Endo M, J. Cryst. Growth, 32, 335 (1976) 
  8. Tibbetts GG, Appl. Phys. Lett., 42, 666 (1983) 
  9. Benissad F, Gadelle P, Coulon M, Bonntain L, Carbon, 26, 61 (1988) 
  10. Arenillas A, Cuervo S, Dominguez A, Menendez JA, Rubiera F, Parra JB, Merino C, Pis JJ, Thermochim. Acta, 423(1-2), 99 (2004) 
  11. Patton RD, Pittman CU, Wang L, Hill JR, Composites A, 30, 1081 (1999) 
  12. Seo MK, Park SJ, Lee SK, J. Colloid Interface Sci., 285, 306 (2005) 
  13. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS, Carbon, 39, 1287 (2001) 
  14. Wu GM, Mater. Chem. Phys., 85, 81 (2004) 
  15. Wu X, Wang Z, Chen L, Huang X, Carbon, 42, 1965 (2004) 
  16. Muhl T, Kretz J, Monch I, Schneider CM, Bruckl H, Reiss G, Appl. Phys. Lett., 76, 786 (2000) 
  17. Giltrow JP, Lancaster JK, Wear, 12, 91 (1968) 
  18. Giltrow JP, Lancaster JK, Wear, 16, 359 (1970) 
  19. Bauer RS, Epoxy Resins Chemistry, American Chemical Society, Washington DC (1979)
  20. May CA, Epoxy Resins, Marcel Pekker, New York (1988)
  21. Kumar S, Doshi H, Srinivasarao M, Park JO, Schiraldi DA, Polymer, 43(5), 1701 (2002) 
  22. Liu W, Hoa SV, Pugh M, Compos. Sci. Technol., 65, 307 (2005) 
  23. Mathisen RJ, Yoo JK, Sung CSP, Macromolecules, 20, 1414 (1987) 
  24. Park SJ, Jun BR, J. Colloid Interface Sci., 284(1), 204 (2005) 
  25. Park SJ, Seo DI, Lee JR, Kim DS, Polym.(Korea), 25(4), 587 (2001)
  26. Park SJ, Jang YS, J. Colloid Interface Sci., 263(1), 170 (2003) 
  27. Friedrich K, Friction and Wear of Polymer Composites, Elsevier, New York (1986)
  28. Sin HC, Saka N, Suh NP, Wear, 55, 163 (1979) 
  29. Gmbel L, Friction and Lubrication in Mechanical Engineering, Krayn, Berlin (1925)