화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.43, No.5, 588-594, October, 2005
제올라이트와 활성탄에서의 황화합물 선택 흡착에 의한 경유 탈황
Desulfurization of Diesel by Selective Adsorption of Sulfur Compounds over Zeolite and Activated Carbon
E-mail:
초록
흡착식 경유 탈황을 위하여 Y 제올라이트와 활성탄에서의 황화합물 흡착특성을 분석하였다. n-옥탄에 BT, DBT, 4,6-DMDBT가 각각 50 ppmw씩 포함된 모사경유와 상용경유를 이용한 회분식 흡착에서 금속이온(Cu2+, Ni2+)이 교환된 제올라이트 흡착제들이 모사경유에서는 우수한 황화합물 흡착성을 보였으나 상용경유에서는 활성탄이 더 우수한 흡착능력을 나타냈다. 모사경유에 벤젠을 첨가하였을 때, 벤젠의 함량이 증가할수록 Ni-Y 제올라이트에서의 황흡착량은 급감하였는데, 활성탄에서는 황흡착량에 큰 영향을 받지 않았다. 활성탄에서의 파과실험에서 황화합물의 평형흡착이 일어나도록 상용경유를 최적 조건의 유속으로 주입하였을 때에 활성탄 1 g은 황농도 186 ppmw인 상용경유를 15 ml까지 처리할 수 있었다. 다양한 용매를 이용한 활성탄 재생실험에서 톨루엔이 가장 우수한 재생능력을 나타냈다.
We have investigated Y zeolite and activated carbon for an adsorptive desulfurization of diesel. In batch experiments, cation (Cu2+, Ni2+) exchanged Y zeolites showed high equilibrium adsorption capacity for sulfur compounds in model diesel, which contained BT, DBT and 4,6-DMDBT of each 50 ppmw in n-octane. But the cation exchanged Y zeolites lost its capacity in commercial diesel (186 ppmw). On the other hand, activated carbon showed reasonable adsorption capacity for sulfur compounds in both model and commercial diesel. The adsorption capacity of sulfur on Ni-Y zeolite was decreased with the increase of benzene concentration in model diesel but the sorption capacity on activated carbon was insensitive to aromatic concentration. In breakthrough test, activated carbon of 1 g could treat 15 ml of commercial diesel with 186 ppmw sulfur. Toluene showed good solvent for regenerating activated carbon among several solvents.
  1. Clean Air Conservation Act, Table 30, Preparation Standard for Transportation Fuel and Its Additives, Ministry of Environment, Korea (2004)
  2. Gates BC, Katzer JR, Schuit GCA, A Chemistry of Catalytic Processes, McGraw-Hill, New York (1979)
  3. Song C, Ma X, Appl. Catal. B: Environ., 41(1), 207 (2003) 
  4. http://www.szorb.com/sulfur_removal.htm
  5. Hernandez-Maldonado AJ, Yang RT, AIChE J., 50(4), 791 (2004) 
  6. King CJ, Separation Processes Based on Reversible Chemical Complexation, In Handbook of Separation Process Technology, Rousseau, RW., ed., Wiley, New York (1987)
  7. Ma XL, Velu S, Kim JH, Song CS, Appl. Catal. B: Environ., 56(1-2), 137 (2005) 
  8. Baes CF, Mesmer RE, The Hydrolysis of Cations, Wiley, New York (1976)
  9. Hernandez-Maldonado AJ, Yang RT, Ind. Eng. Chem. Res., 42(1), 123 (2003) 
  10. Yang RT, Hernandez-Maldonado AJ, Yang FH, Science, 301(5629), 79 (2003) 
  11. Park YT, Principles and Application of Activated Carbon (1992)
  12. Martin RJ, Ng WJ, Water Res., 19(12), 1527 (1985) 
  13. Moreno-Castilla C, Rivera-Utrilla J, Joly JP, Lopez-Ramon MV, Ferro-Garcia MA, Carrasco-Marin F, Carbon, 33(10), 1417 (1995) 
  14. Salvador F, Sanchez Jimenez C, Carbon, 34(4), 511 (1996) 
  15. Nakano Y, Hua LQ, Nishijima W, Shoto E, Okada M, Water Res., 34(17), 4139 (2000) 
  16. http://www.samchullyac.co.kr