화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.16, No.6, 815-821, December, 2005
다양한 합성조건에서 얻어진 멜라민계 고유동화제가 함유된 시멘트의 물리적 유동특성
The Physical Fiuidity Properties of Cement Containing Melamine-type Superplasticizer Obtained with Various Synthetic Conditions
E-mail:
초록
현재 콘크리트 산업에서 주로 사용되고 있는 3가지 화학 혼화제로서 변경 리그닌계(LS), 나프탈렌계(SNF) 및 멜라민계(SMF) 혼화제가 널리 사용되고 있다. 본 연구에서는 SMF계 고유동화제의 합성과정을 수산화메틸화 반응(Hydroxymethylation)-술폰화 반응(Sulfonation)-중합(Polymerization)-중화(Neutralization) 및 안정화(Stabilization)의 4단계로 나누어 반응을 진행시키면서 멜라민과 포르말린의 몰비를 변화시키고, 반응 3단계 중합과정에서 산촉매의 종류와 양을 조절하면서 시멘트용 고유동화제를 합성하였다. 다양한 합성조건에서 합성된 SMF계 고유동화제를 시멘트 모르타르 및 페이스트에 적용하여 작업성, 슬럼프 손실 및 압축 강도 등의 물리적 특성을 비교하였고, SEM image를 통하여 수화물 형태를 관찰하였다. 실험결과 SMF 고유동화제의 축합물 구조특성이 시멘트의 유동화 특성에 큰 영향을 주었다.
Three major commercially available organic chemical admixtures are modified lignosulfonates (LS), sulfonated naphthalene-formaldehyde resins (SNF) and sulfonated melamine-formaldehyde (SMF). In this study, various sulfonated melamine-formaldehyde (SMF) superplasticizers were synthesized via four synthetic steps including hydroxymethylation (Step 1), sulfonation (Step 2), polymerization (Step 3) and neutralization and stabilization (Step 4). In this synthesis, mole ratio of melamine to formaline and the amount of acid catalyst used were varied. The obtained SMF superplasticizers were applied to cement paste and mortar and their physical properties including workability, slump loss, compressive strength were investigated. Also their hydrate shapes were investigated by examining SEM images of the cured paste. It was found that the fluidity properties of cement were significantly influenced by the structure of SMF condensates.
  1. Kim WJ, Kang IK, Kim SH, Kim WS, Kwon YD, J. Kor. Conc. Soc., 5, 121 (1993)
  2. Han CG, J. Kor. Conc. Soc., 13, 26 (2001)
  3. Rixon MR, Chemical Admixtures for Concrete, 52, Halsted Press, London (1978)
  4. Eun HT, Ko YS, J. Ind. Eng. Chem., 9(5), 614 (2003)
  5. Roy DM, Cem. Concr. Res., 3, 807 (1973) 
  6. Absi-Halabi M, Lahalih SM, Al-Khalid T, J. Appl. Polym. Sci., 33, 2975 (1987) 
  7. Asaga K, Roy DM, Cem. Concr. Res., 10, 287 (1980) 
  8. Malhotra VM, Proc. 1st Intern. Symp. Superplasticizers in Concrete, Amer. Conc. Inst., 221, Detroit, Michigan, U.S.A (1979)
  9. Yoon SW, Bok JS, Rho JS, J. Ind. Eng. Chem., 10(6), 883 (2004)
  10. U. S. Patent 4,677,159 (1987)
  11. U. S. Patent 5,424,390 (1995)
  12. U. S. Patent 4,444,945 (1984)
  13. Anderson PJ, Roy DM, Cem. Concr. Res., 18, 980 (1988) 
  14. Uchikawa H, Hanchara S, Sawaki D, Cem. Concr. Res., 27, 37 (1997) 
  15. Sebok T, Vondruska M, Cem. Concr. Res., 30, 993 (2000) 
  16. Perenchio WF, Whiting DA, Kantro DL, Proc. 1st Intern. Symp. Superplasticizers in Concrete, CANMET, Amer. Conc. Inst., 137, Ottawa, Canada (1979)
  17. Lee YH, Kim CA, Jang WH, Choi HJ, Jhon MS, Polymer, 42(19), 8277 (2001) 
  18. Sebok T, Vondruska M, Cem. Concr. Res., 30, 993 (2000) 
  19. Koeda K, J. Chem. Soc. Japan, Pure Chem. Soc., 75, 571 (1954)
  20. Jahromi S, Polymer, 40(18), 5103 (1999) 
  21. Pei M, Wang D, Hu X, Xu D, Cem. Concr. Res., 30, 1841 (2000) 
  22. Lahallh SM, Absi-Halabi M, All M, Cem. Concr. Res., 18, 513 (1988) 
  23. Kinoshta M, Yonezawa T, Yuki Y, JCA Proc. Cem. Conc., 49, 196 (1993)
  24. Chandra S, Biornstrom J, Cem. Concr. Res., 32, 1605 (2002) 
  25. Chandra S, Biornstrom J, Cem. Concr. Res., 32, 1613 (2002) 
  26. Jennings HM, Advanced in Cement Technology, ed. S. N. Ghosh, 1, 349, Pergamon Press, Oxford (1983)