Journal of Colloid and Interface Science, Vol.285, No.1, 100-109, 2005
Effect of thermal treatment on interfacial properties of beta-lactoglobulin
The changes in the secondary conformation and surface hydrophobicity of beta-lactoglobulin subjected to different thermal treatments were characterized at pH values of 7, 5.5 and 4 using circular dichroism (CD) and hydrophobic dye binding. Heating resulted in a decrease in alpha-helix content with a corresponding increase in random coil at all pH values, this change being more pronounced for small heating times. Heating also resulted in an increase in surface hydrophobicity as a result of partial denaturation, this increase being more pronounced at pH 4. Thermal treatment resulted in a shift of the spread monolayer isotherm at air-water interface to smaller area per molecule due to increased flexibility and more loop formation. Thermal treatment led to an increase in interfacial shear elasticity and viscosity of adsorbed beta-lactoglobulin layer at pH 5.5 and 7. Interfacial shear elasticity, shear viscosity, stability of beta-lactoglobulin stabilized emulsion and average coalescence time of a single droplet at a planar oil-water interface with adsorbed protein layer exhibited a maximum for protein subjected to 15 min heat treatment at pH 7. At pH 5.5, the interfacial shear theological properties and average single drop coalescence time were maximum for 15 min heat treatment whereas emulsion stability was maximum for 5 min heat treatment. At pH 7, thermal treatment was found to enhance foam stability. Analysis of thin film drainage indicated that interfacial shear theological properties do not influence thin film drainage. (c) 2004 Elsevier Inc. All rights reserved.
Keywords:lactoglobulin;secondary conformation;surface hydrophobicity;thermal treatment;partial denaturation;emulsion stability;interfacial shear elasticity;interfacial shear viscosity;drop coalescence spread monolayer isotherm