화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.286, No.2, 479-486, 2005
Temperature-dependent intermolecular force measurement of poly(N-isopropylacrylamide) grafted surface with protein
We have investigated the temperature dependence of the intermolecular force between poly(N-isopropylacrylamide) (PNiPAM) grafted surface and bovine serum albumin (BSA) in phosphate buffer (pH 7.4) using atomic force microscopy at the nanonewton scale. These observations show that the interaction force is nearly zero below the phase transition temperature of PNiPAM and that it increases steeply during the phase transition. Since the PNiPAM chains are grafted onto the ammosilane (gamma-aminopropyltriethoxysilane)-treated silicon wafer, we measured the force-distance curve of BSA-immobilized tips for the bare and the aminosilane-treated silicon wafer. These surfaces show no temperature dependence and their values are different from those of the PNiPAM-grafted surfaces at 30 degrees C. The results indicate that the measured adhesion force is between the PNiPAM-grafted surface and the BSA-immobilized tip. Our studies on the intermolecular force between other surfaces (CH3- and COOH-terminated self-assembled monolayers) and the BSA-immobilized tip indicate that the variation in the intermolecular force between the PNiPAM surface and BSA with temperature can be attributed to the changes in the properties of the PNiPAM chains. From consideration of the PNiPAM phase transition mechanism, it is speculated that the intermolecular force between the PNiPAM-grafted surface and BSA would be affected by changes in the arrangement of the bound water molecules around the PNiPAM chain and by changes in the conformation (i.e., in the chain mobility) of the PNiPAM chain during the phase transition. (c) 2004 Elsevier Inc. All rights reserved.