Journal of Physical Chemistry A, Vol.109, No.22, 4961-4965, 2005
Molecular structure of 2,5-dihydropyrrole (C4NH7), obtained by gas-phase electron diffraction and theoretical calculations
The structure of 2,5-dihydropyrrole (C4NH7) has been determined by gas-phase electron diffraction (GED), augmented by the results from ab initio calculations employing third-order Moller-Plesset (MP3) level of theory and the 6-311+G(d,p) basis set. Several theoretical calculations were performed. From theoretical calculations using MP3/6-311+G(d,p) evidence was obtained for the presence of an axial (63%) (N-H bond axial to the CNC plane) and an equatorial conformer (37%) (N-H bond equatorial to the CNC plane). The five-membered ring was found to be puckered with the CNC plane inclined at 21.8 (38)° to the plane of the four carbon atoms.