화학공학소재연구정보센터
Thin Solid Films, Vol.482, No.1-2, 242-247, 2005
Electronic structure and hardening mechanism of Si-doped/undoped diamond-like carbon films
In this article, we have investigated the electronic structures of silicon-doped and undoped diamond-like carbon (DLC) thin films using Fourier transform infrared (FTIR) spectra, Raman spectra, photoluminescence (PL), and X-ray absorption near edge structure (XANES) spectroscopy. The films were deposited by Plasma-Enhanced Chemical Vapour Deposition (PECVD) method in argon atmosphere using C2H2 and/or Si(CH3)(4) vapour precursors. Raman spectra displayed a decrease in (I-D/I-G) ratio for films synthesized using Si(CH3)4 vapour, indicative of the formation of more diamond-like (sp(3) rich) films. The PL intensities and the full width at half maximum (FWHM) of the PL band increased, whereas PL peak position shifted towards lower energies when the Si incorporation was increased in the film. FTIR spectra revealed an increase in Si-H-n and C-H-n bonding intensity at 2100 cm(-1) and 2900 cm(-1), respectively, with increased Si incorporation. Hardness as well as the Young's modulus changed with not only the sp(2) content present in the film, but also decrease in the three-dimensional interlinks of the C-C atomic bond structure by the C-H-n and Si-H-n, weaker bonds. (c) 2004 Elsevier B.V. All rights reserved.