Energy Conversion and Management, Vol.46, No.18-19, 2892-2906, 2005
Structure and temperature distribution of a stagnation-point Diesel spray premixed flame
We experimentally examine the flow and flame characteristics of a stagnation point premixed flame influenced by Diesel sprays. In the experiment, distributions of drop size, drop axial velocity and its fluctuation as well as the gas phase temperature are measured by using the phase-doppler particle analyzer and a thin thermocouple. As might be expected, similar to the gasoline spray flame, the partially prevaporized Diesel spray flame is composed of a weak blue flame zone, indicating the burning of methane fuel, and a strongly luminous zone containing many bright yellow lines showing the passages of burning Diesel drops. It is found that the axial temperature profiles at various radial positions consist of an upstream preheat region, a maximum temperature downstream of the blue flame and a downstream region with a declined temperature curve because of the heat loss to the quartz plate. The SMD of the drops increases from the upstream preheat region to a maximum near the blue flame and then decreases in the downstream burning zone. Along the axial position, the drops are decelerated in front of the flame but accelerated when passing through the blue flame. It is also interesting to note that the radial distributions of SMD and number density of drops in the upstream region are mainly influenced by small drops flowing outward, since the upstream vaporization of Diesel drops is very limited; while those in the downstream region should be influenced by both small drops flowing outward and Diesel drops burning. From the experimental observations, there are impinging and bouncing of Diesel drops downstream of the spray flame near the quartz plate, resulting in a small amount of soot and carbon deposits on the wall. These interesting phenomena will be reported in the near future. (c) 2005 Elsevier Ltd. All rights reserved.