화학공학소재연구정보센터
Macromolecules, Vol.38, No.12, 5300-5312, 2005
Molecular dynamics simulations of polyampholyte-polyelectrolyte complexes in solutions
We have studied how the charge distribution along a polyampholyte backbone influences aggregation of polyampholyte and polyelectrolyte chains in dilute and semidilute solutions. Using molecular dynamics (MD) simulations, we have shown that the complexation between polyampholyte and polyelectrolyte chains is due to polarization-induced attractive interactions between molecules. A polyampholyte chain binds to a polyelectrolyte in such a way to maximize the electrostatic attraction between oppositely charged ionic groups and minimize the electrostatic repulsion between similarly charged ones. The charge sequence along the polyampholyte backbone has a profound effect on the complex structure. In dilute solutions, a diblock polyampholyte could form a three-arm starlike complex in which the longest branches of the star are formed either by two sections of the polyelectrolyte chain or by a negatively charged block of the polyampholyte and by a section of the polyclectrolyte chain. There are no such complexes in solutions of random polyampholytes and polyampholytes with short blocky charge sequences. In dilute solutions of moderate polymer concentration polyampholytes with long blocky charge sequences form mixed micellar aggregates containing both polyampholyte and polyelectrolyte chains. In semidilute solutions diblock polyampholytes form a network of micelles spanning the entire system. On the contrary, the structure of multichain aggregates formed by random polyampholytes and polyelectrolytes resembles that of branched polymers with polyampholyte chains cross-linking polyclectrolyte,; together. The osmotic coefficients of polyampholyte polyelectrolyte mixtures show no dependence on the charge sequence along the polymer backbone, confirming the leading contribution or small ions to osmotic pressure of ionic systems.