화학공학소재연구정보센터
AAPG Bulletin, Vol.89, No.8, 1019-1031, 2005
When do faults in sedimentary basins leak? Stress and deformation in sedimentary basins; examples from the North Sea and Haltenbanken, offshore Norway
Faults may be barriers or conduits for fluid flow in sedimentary basins. The properties of faults, however, depend on stress conditions and rock properties at the time of deformation and subsequent diagenesis of the fault zone. Several recent publications have suggested that petroleum reservoirs in the North Sea and at Haltenbanken, offshore mid-Norway, have experienced leakage along faults caused by imposed stresses, related to glacial loading during the Quaternary. The Jurassic reservoirs in these areas are, however, bounded by faults produced during the Upper Jurassic rifting, when the sediments were still soft and, for the most part, uncemented. These faults do not represent zones of weakness. Because of strain hardening and later diagenesis in sandstones and cementation in mudstones, the fault zones are commonly stronger than the adjacent rocks. They are therefore not likely to be reactivated tectonically. Furthermore, there is little evidence of glacial deformation in the Quaternary sediments overlying these oil fields. It has been proposed that very large horizontal stresses, inferred to be related to periods of glacial loading, caused shear failure at pore pressures below fracture pressure and subsequent leakage along these shear zones. We argue that this is not a likely mechanism during progressive burial in sedimentary basins. Very high horizontal effective stresses, up to 60 MPa, at about 3 km (1.8 mi) depth, at Haltenbanken would have caused more mechanical compaction and grain crushing than that observed in situ. External stress, i.e., plate-tectonic stress from spreading ridges (ridge push), will be geology in the same university since 1994. His research focuses on rock properties with applications to petroleum reservoirs.