화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.91, No.4, 393-405, 2005
A simple method to estimate the contribution of biological floc and reactor-solution to mass transfer of oxygen in activated sludge processes
In this study, the mass transfer coefficient of biological floc (K(L)a(bf)) was estimated from the mass transfer coefficient of the mixed-liquor (K(L)a(f)) and the reactor-solution (K(L)a(e)). The biological floc resistance (BFR) and reactor-solution resistance (SR) were defined as the reciprocal of K(L)a(bf) and K(L)a(e), respectively, by applying the concept of serial-resistance originally presented in two-film theory (Lewis and Whitman (1924) Ind Eng Chem 16:1215-1220). The specific biological floc resistance (SBFR) was defined as biological floc resistance per unit biomass concentration. The data indicated that an activated sludge process yielding low BFR/MLR and BFR/SIR tended to produce higher oxygen transfer efficiency. Surprisingly, the reactor-solution posed the same level of resistance as clean water in all experiments, except in a 5-day SRT, non-nitrifying, completely mixed activated sludge (CMAS) process run. Furthermore, SBFR successfully represented biological floc and showed a positive correlation to sludge volume index (SVI). In addition, SBFR/SR and oxygen transfer efficiency (OTEf) followed an exponential relationship for the complete data set. The method of separating the mixed-liquor into biological floc and reactor-solution improved the understanding of oxygen transfer under process conditions, without resorting to intrusive techniques or direct handling of fragile biological floc. (c) 2005 Wiley Periodicals, Inc.