화학공학소재연구정보센터
International Journal of Control, Vol.78, No.10, 706-719, 2005
Tracking control of trim trajectories of a blimp for ascent and descent flight manoeuvres
A blimp is a small airship that has no metal framework and collapses when deflated. It belongs to family of unmanned aerial vehicles (UAVs). In this paper we address the problem of designing tracking feedback control of an underactuated autonomous UAV. The ascent and descent flight conditions as one in which the rate of change (of magnitude) of the airship's state vector is zero and the resultant of the applied forces and moments is constant lead to trimmed flight trajectories. The subject of the tracking control is to stabilize the engine around the planned flight. Using a combined integrator backstepping approach and Lyapunov theory, the stability results are local and overcome the minimum number of actuators (inputs) with respect to the blimp's six degrees of freedom. Considering physic limits in UAVs, other trimmed flights are investigated and compared.