화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.109, No.27, 6056-6065, 2005
Isomeric product distributions from the self-reaction of propargyl radicals
We have investigated the isomeric C6H6 product distributions of the self-reaction of propargyl (C3H3) radicals at two nominal pressures of 25 and 50 bar over the temperature range 720-1350 K. Experiments were performed using propargyl iodide as the radical precursor in a high-pressure single-pulse shock tube with a residence time of 1.6-2.0 ms. The relative yields of the C6H6 products are strongly temperature dependent, and the main products are 1,5-hexadiyne (15HD), 1,2-hexadiene-5-yne (12HD5Y), 3,4-dimethylenecyclobutene (34DMCB), 2-ethynyl-1,3-butadiene (2E13BD), fulvene, and benzene, with the minor products being cis- and trans-1,3-hexadiene-5-yne (13HD5Y). 1,2,4,5-Hexatetraene (1245HT) was observed below 750 K but the concentrations were too low to be quantified. The experimentally determined entry branching ratios are: 44% 15HD, 38% 12HD5Y, and 18% 1245HT, which is efficiently converted to 34DMCB. Following the initial recombination step, various C6H6 isomers are formed by thermal rearrangement. The experimentally observed concentrations for the C6H6 species are in good agreement with earlier experiments on 15HD thermal rearrangement.