Journal of the American Chemical Society, Vol.127, No.29, 10259-10268, 2005
Exploiting the Pd- and Ru-catalyzed cycloisomerizations: Enantioselective total synthesis of (+)-allocyathin B-2
Pd- and Ru-catalyzed cycloisomerizations of 1,6-enynes are compared and contrasted. Such considerations led to the enantioselective synthesis of a cyathin terpenoid, (+)-allocyathin B-2 (1). The synthesis features a Pd-catalyzed asymmetric allylic alkylation (AAA) to install the initial quaternary center, a Ru-catalyzed diastereoselective cycloisomerization to construct the six-membered ring, and a diastereoselective hydroxylative Knoevenagel reaction to introduce the final hydroxyl group. We demonstrate for the first time a mechanism-based stereochemical divergence in Pd- and Ru-catalyzed cycloisomerization reactions as well as in creation of alkene geometry with alkynes bearing a carboalkoxy group. Mechanistic rationalization is proposed for these observations.