Macromolecules, Vol.38, No.15, 6435-6444, 2005
Sequence distribution and polydispersity index affect the hydrogen-bonding strength of poly(vinylphenol-co-methyl methacrylate) copolymers
A series of poly(vinylphenol-co-methyl methacrylate) (PVPh-co-PMMA) block and random copolymers were prepared through anionic and free radical polymerizations, respectively, of 4-tert-butoxystyrene and methyl methacrylate and subsequent selective hydrolysis of the 4-tert-butoxystyrene protective groups. Analysis of infrared spectra suggests that the random copolymer possesses a higher fraction of hydrogen-bonded carbonyl groups and a larger interassociation equilibrium constant relative to those of a block copolymer containing similar vinylphenol content because of the different sequence distribution that may arise from the so-called intramolecular screening effect. In contrast, the glass transition temperature of the block copolymer, which has the lower polydispersity index, is higher than that of the random copolymer at the same composition.