Journal of Membrane Science, Vol.260, No.1-2, 119-130, 2005
Numerical model of non-isothermal pervaporation in a rectangular channel
A numerical model of non-isothermal pervaporation was developed to investigate the development of the velocity, concentration and temperature fields in rectangular membrane module geometry. The model consists of the coupled Navier-Stokes equations to describe the flow field, the energy equation for the temperature field, and the species convection-diffusion equations for the concentration fields of the solution species. The coupled nonlinear transport equations were solved simultaneously for the velocity, temperature and concentration fields via a finite element approach. Simulation test cases for trichloroethylene/water, ethanol/water and iso-propanol/water pervaporation, under laminar flow conditions, revealed temperature drop axially along the module and orthogonal to the membrane surface. The nonlinear character of the concentration and temperature boundary-layers are most significant near the membrane surface. Estimation of the mass transfer coefficient assuming isothermal assumption conditions can significantly deviate from the non-isothermal predictions. For laminar conditions, predictions of the feed-side mass transfer coefficient converged to predictions from the classical Leveque solution as the feed temperature approached the permeate temperature. (c) 2005 Elsevier B.V. All rights reserved.
Keywords:pervaporation;non-isothernial;numerical model;finite element method;ethanol dehydration;trichloroethylene;iso-propanol