Journal of Physical Chemistry B, Vol.109, No.32, 15636-15644, 2005
Orientation of dye molecules in DNA-based films with chain alignment and judgment of their DNA-binding modes
Novel composite films of chain-oriented DNA, which contain the DNA-binding dyes aligned in specific orientation, were successfully prepared by drying the solution under a horizontal magnetic field. Most of the dye-DNA composite films showed linear dichroism, as revealed by polarized ultraviolet-visible (UV-vis) spectroscopy. The intercalators, ethidium bromide and acridine orange, were fixed in chain-oriented DNA films in a similar binding manner as in solutions. Also, Hoechst 33258 and 4',6-diamidino-2-phenylindole were found to be aligned along the minor groove, even in the solid films. Thus, our new method of preparing dye-DNA composite films with chain orientation is useful for aligning small molecules, and it will provide views of the novel anisotropic materials expected in various application fields. We used this method to prepare composite DNA films with newly designed original compounds. Seven of nine dyes were judged to bind obviously to DNA as intercalators by polarized UV-vis spectroscopy. The DNA-binding manners were further analyzed by fluorescence anisotropy measurements. On the basis of the curves for the rotational angle dependence of the anisotropy, we were able to estimate the angles between the transition-dipole moments of dyes and the aligned chain axis of DNA. Interestingly, two original compounds were found to be in the tilted forms with regard to the plane of base pairs. We emphasize here that the method using aligned dye-DNA films is very convenient for identifying the binding modes of the compounds for double-stranded DNA.