Journal of Physical Chemistry B, Vol.109, No.33, 15786-15790, 2005
Aligned Zn-Zn2SiO4 core-shell nanocables with homogenously intense ultraviolet emission at 300 nm
Aligned coaxial nanocables were grown on Si substrates by a vapor-deposition technique. The lengths of the nanocables increased as the distance between the substrate and the source decreased. The nanocables were characterized as homogeneously crystallized shells of about 25 nm thick, diameters of about 100 nm, and round top ends. It was found that the shell emits an intense middle-ultraviolet about 300 nm at room temperature. This emission was attributed to the thin double-layer structure in the Zn-Zn2SiO4 core-shell nanocable where the Zn2SiO4 shell has the potential to serve as more ideal luminophors. The results demonstrated that the nanocable density could be changed by altering nucleation density at the steps on the substrate surface. The unique growth manner described herein provides a new technique for the homogeneous crystallization of Zn-ZnSiO4 core-shell nanocables.