Journal of the American Chemical Society, Vol.127, No.35, 12407-12415, 2005
MaP peptides: Programming the self-assembly of peptide-based mesoscopic matrices
We describe an approach that utilizes nonlinear peptides to direct the assembly of previously reported Self-Assembling Fibers (SAFs). The SAF system comprises two complementary linear peptides, SAF-p1 and SAF-p2a, which combine to form exclusively linear, nonbranched fibers. The Matrix-Programming (MaP) peptides described herein are based on these peptides: they comprise two or three half-peptide blocks derived from the SAF peptides, which are conjugated via dendritic hubs. Different MaP peptides coassembled with the standard SAF peptides to form specific structures, such as hyperbranched networks, polygonal matrices, and regularly segmented and terminated fibers. The role of each half-peptide block in dictating the different features has been elucidated. This provides a strong basis for designing new peptide-based nanostructured materials from the bottom up.