Langmuir, Vol.21, No.17, 7702-7709, 2005
Magnetic resonance investigations of lipid motion in isotropic bicelles
The dynamics of DMPC in different isotropic bicelles have been investigated by NMR and EPR methods. The local dynamics were obtained by interpretation of C-13 NMR relaxation measurements of DMPC in the bicelles, and these results were compared to EPR spectra of spin-labeled lipids. The overall size of the bicelles was investigated by PFG NMR translational diffusion measurements. The dynamics and relative sizes were compared among three different bicelles: [DMPC]/[DHPC] = 0.25, [DMPC]/[DHPC] = 0.5, and [DMPC]/[CHAPS] = 0.5. The local motion is found to depend much more strongly on the choice of the detergent, rather than the overall size of the bicelle. The results provide an explanation for differences in apparent dynamics for different peptides, which are bound to bicelles. This in turn determines under what conditions reasonable NMR spectra can be observed. A model is presented in which extensive local motion, in conjunction with the overall size, affects the spectral properties. An analytical expression for the size dependence of the bicelles, relating the radius of the bilayer region with physical properties of the detergent and the lipid, is also presented.