Chinese Journal of Chemical Engineering, Vol.13, No.4, 516-521, 2005
Anoxic biological phosphorus uptake in A(2)O process
A lab-scale anaerobic-anoxic-oxic (A(2)O) process used to treat a synthetic brewage wastewater was investigated. The objectives of the study were to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal and enhance the denitrifying phosphorus removal in A(2)O bioreactors. Sludge analysis confirmed that the average anoxic P uptake accounted for approximately 70% the total amount of P uptake, and the ratio of anoxic P uptake rate to aerobic P uptake rate was 69%. In addition nitrate concentration in the anoxic phase and different organic substrate introduced into the anaerobic phase had significant effect on the anoxic P uptake. Compared with conventional A(2)O processes, good removal efficiencies of COD, phosphorus, ammonia and total nitrogen (92.3%, 95.5%, 96% and 79.5%, respectively) could be achieved in the anoxic P uptake system, and aeration energy consumption was saved 25%. By controlling the nitrate recirculation flow in the anoxic zone, anoxic P uptake could be enhanced, which solved the competition for organic substrates among poly-P organisms.and denitrifiers successfully under the COD limiting conditions. Therefore, in wastewater treatment plants the control system should be applied according to the practical situation to optimize the operation.
Keywords:A(2)O process;nitrogen and phosphorus removal;denitrifying phosphorus removing bacteria;nitrate recirculation flow