Electrochimica Acta, Vol.50, No.22, 4444-4450, 2005
Two-equivalent electrochemical reduction of a cyano-complex [Tl-III(CN)(2)](+) and the novel di-nuclear compound [(CN)(5)Pt-II-Tl-III](0)
Extending our recent insights in two-electron transfer microscopic mechanisms for a Tl-III/Tl-I redox system, the electrochemical response of glassy carbon electrode in acidified solutions of Tl-III (ClO4)(3) containing different concentrations of sodium cyanide has been extensively studied for the first time by use of cyclic voltammetry and the CVSIM curve simulation PC program. The complex [Tl-III(CN)(2)](+) has been thoroughly identified electrochemically and shown to display a single welldefined reduction wave (which has no anodic counterpart), ascribed to the two-equivalent process yielding [Tl-I(aq)](+). This behavior is similar to that of [Tl-III (aq)](3+) ion in the absence of sodium cyanide, disclosed in the previous work, and is compatible with the quasi-simultaneous yet sequential two-electron transfer pattern (with two reduction waves merged in one), implying the rate-determining first electron transfer step (resulting in the formation of a covalently interacting di-thallium complex as a metastable intermediate), and the fast second electron transfer step. Some preliminary studies of the two-equivalent reduction of directly metal-metal bonded stable compound [(CN)(5)Pt-II-Tl-III](0) has been also performed displaying two reduction waves compatible with a true sequential pattern. (c) 2005 Elsevier Ltd. All rights reserved.
Keywords:thallium(III);cyano-complexes;two-electron transfer;cyclic voltammetry;di-nuclear complexes