Chemical Engineering Communications, Vol.192, No.10-12, 1636-1654, 2005
Multi-scale mass transfer model for gas-solid two-phase flow
This article is devoted to analyzing the mass transfer in heterogeneous gas-solid flow by means of structure and process decomposition. A multi-scale mass transfer model was developed on the basis of the hydrodynamics calculated from the so-called EMMS model. This resulted in the predictions of the steady-state two-dimensional concentration distributions of sublimated substance as well as total mass transfer coefficient for circular concurrent gas-solid contactors. The predictions were validated by experimentally measured (via an on-line HP GC-MS system) axial concentration distributions of sublimated naphthalene in air in a circulating fluidized bed riser 3.0 m in height and 72 mm in diameter. The experiment also obtained mass transfer coefficients comparable to theoretical predictions under conditions with various gas velocities, solid circulation rates, particle sizes, and active material fractions in the particles. Both the theoretical and experimental results demonstrated that the heterogeneous flow structure prevailing in the concurrent gas-solid flow greatly influenced the flow's mass transfer.