화학공학소재연구정보센터
Energy Conversion and Management, Vol.47, No.1, 97-113, 2006
Improvement of the raw gas drying process in olefin plants using an absorption cooling system driven by quench oil waste heat
The raw gas (RG) in olefin plants is usually dried by triethyleneglycol absorption of the gas humidity. As low temperatures favour the absorption process, a tower cooling water system is conventionally used to reduce the raw gas temperature. However, in this case, the ambient temperature heavily influences the RG temperature, and at very high ambient temperatures, the efficiency of the drying process is too low. The objective of this paper is to propose a new cooling system that recovers part of the waste heat contained in the quench oil to improve the drying process of raw gas in olefin plants. This cooling system consists of a single effect water/LiBr absorption system, which produces chilled water at 10 degrees C, and an additional chilled water/raw gas heat exchanger. The cooling water is used in parallel to dissipate heat in the absorption chiller and also as the first stage for cooling the raw gas before the chilled water is used. The technical performance of the new raw gas cooling system is compared with that of the conventional system using a cooling system design for a typical size olefin plant. The proposed system can run the drying process at the required optimised temperature, eliminate the dependence of the process on ambient temperature and use waste heat that would otherwise be dissipated in some form, as it is not useful for other applications inside the plant. (c) 2005 Elsevier Ltd. All rights reserved.