Chemical Engineering Science, Vol.61, No.1, 113-123, 2006
Numerical solution of the bivariate population balance equation for the interacting hydrodynamics and mass transfer in liquid-liquid extraction columns
A comprehensive model for predicting the interacting hydrodynamics and mass transfer is formulated on the basis of a spatially distributed population balance equation in terms of the bivariate number density function with respect to droplet diameter and solute concentration. The two macro- (droplet breakage and coalescence) and micro- (interphase mass transfer) droplet phenomena are allowed to interact through the dispersion interfacial tension. The resulting model equations are composed of a system of partial and algebraic equations that are dominated by convection, and hence it calls for a specialized discretization approach. The model equations are applied to a laboratory segment of an RDC column using an experimentally validated droplet transport and interaction functions. Aside from the model spatial discretization, two methods for the discretization of the droplet diameter are extended to include the droplet solute concentration. These methods are the generalized fixed-pivot technique (GFP) and the quadrature method of moments (QMOM). The numerical results obtained from the two extended methods are almost identical, and the CPU time of both methods is found acceptable so that the two methods are being extended to simulate a full-scale liquid-liquid extraction column. (c) 2005 Elsevier Ltd. All rights reserved.