Journal of Physical Chemistry B, Vol.109, No.42, 19613-19619, 2005
Electrochemical doping of chirality-resolved carbon nanotubes
Raman spectra of electrochemically charged single-wall carbon nanotubes (HiPco) were studied by five different laser photon energies between 1.56 and 1.92 eV. The bands of radial breathing modes (RBM) were assigned to defined chiralities by using the experimental Kataura plot. The particular (n,m) tubes exhibit different sensitivity to electrochemical doping, monitored as the attenuation of the RBM intensities. Tubes which are in good resonance with the exciting laser exhibit strong doping-induced drop of the RBM intensity. On the other hand, tubes whose optical transition energy is larger than the energy of an exciting photon show only small changes of their RBM intensities upon doping. This rule presents a tool for analysis of mixtures of single-walled carbon tubes of unknown chiralities. It also asks for a re-interpretation of some earlier results which were reported on the diameter-selectivity of doping. The radial breathing mode in strongly n- or p-doped nanotubes exhibited a blue-shift. A suggested interpretation follows from the charging-induced structural changes of SWCNTs bundles, which also includes a partial de-bundling of tube ropes.