화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.50, No.10, 1520-1533, 2005
A Bayesian approach to identification of hybrid systems
In this paper, we present a novel procedure for the identification of hybrid systems in the class of piecewise ARX systems. The presented method facilitates the use of available a priori knowledge on the system to be identified, but can also be used as a black-box method. We treat the unknown parameters as random variables, described by their probability density functions. The identification problem is posed as the problem of computing the a posteriori probability density function of the model parameters, and subsequently relaxed until a practically implementable method is obtained. A particle filtering method is used for a numerical implementation of the proposed procedure. A modified version of the multicategory robust linear programming classification procedure, which uses the information derived in the previous steps of the identification algorithm, is used for estimating the partition of the piecewise ARX map. The proposed procedure is applied for the identification of a component placement process in pick-and-place machines.