화학공학소재연구정보센터
Applied Catalysis A: General, Vol.295, No.2, 97-105, 2005
Transesterification of triacetin with methanol on solid acid and base catalysts
Biodiesel is a particularly attractive renewable fuel as it can be used in existing engines, is environmentally friendly, and is readily synthesized from animal fats and vegetable oils. Heterogeneous catalysts offer exciting possibilities for improving the economics of biodiesel synthesis; however, few published investigations have addressed the use of such catalysts to date. The purpose of this research was to investigate the kinetics and selectivities of different solid catalysts for the transesterification of triacetin (a model compound for larger triglycerides as found in vegetable oils and fats) with methanol. Reaction was carried out at 60 degrees C in a batch reactor with a variety of solid and liquid, acid and base catalysts. The homogeneous phase (i.e., liquid) catalysts (NaOH and H2SO4) were studied for comparison. Amberlyst-15, Nafion NR50, sulfated zirconia, and ETS-10 (Na, K) showed reasonable activities, suggesting that they could be suitable alternatives to liquid catalysts. While on a wt.% basis (of reaction mixture) the homogeneous phase catalysts gave higher rates of reaction, on a rate-per-site basis the solid acids were similar to H2SO4. Sulfated zirconia and tungstated zirconia had comparable turnover frequencies as H2SO4. The deactivation characteristics of some of these catalysts were also studied. (c) 2005 Elsevier B.V. All rights reserved.