화학공학소재연구정보센터
Langmuir, Vol.21, No.25, 11582-11587, 2005
Multicomponent cationic lipid-DNA complex formation: Role of lipid mixing
Multicomponent cationic lipid-DNA complexes (lipoplexes) were prepared by adding linear DNA to mixed lipid dispersions containing two populations of binary cationic liposomes and characterized by means of small angle X-ray scattering (SAXS). Four kinds of cationic liposomes were used. The first binary lipid mixture was made of the cationic lipid (3'[N-(N,N'-dimethylaminoethane)-carbamoyl]cholestrol (DC-Chol) and the neutral helper lipid dioleoylphosphocholine (DOPC) (DC, Chol/DOPC liposomes). the second one of the cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the neutral dioleoylphosphatidylethanolamine (DOPE) (DOTAP/DOPE liposomes). the third one of DC-(Chol and DOPE (DC-Chol/DOPE liposomes), and the fourth one of DOTAP and DOPC (DOTAP/DOPC liposomes). Upon DNA-induced fusion of liposomes, large lipid mixing at the molecular level occurs, As a result, highly organized mixed lipoplexes spontaneously form with membrane properties intermediate between those of starting liposomes. By varying the composition of lipid dispersions, different DNA packing density regimes can also be achieved. Furthermore, occurring lipid mixing was found to induce hexagonal to lamellar phase transition in DOTAP/DOPE membranes. Molecular mechanism underlying experimental findings are discussed.